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I. INTRODUCTION 

The necessity of decarbonizing the energy mix has been one 
of the key topics in recent years and will become even more 
crucial in the future due to changes in the structure of the 
energy mix. Decarbonization efforts often focus primarily 
on electricity generation, while heat production is frequently 
overlooked. Industrial heat and heating systems are 
significant sectors that are currently primarily covered by 
fossil fuels. Achieving net-zero emissions will require a 
fundamental shift in the approach to the industrial sector, 
particularly in terms of energy sources. High-temperature 
processes and large industrial plants are among the largest 
polluters. Approximately one-quarter of total greenhouse 
gas emissions come from industrial applications alone [1]. 
Therefore, it is crucial to focus on decarbonizing industry, 
where nuclear facilities can play a significant role, as they 
are the most reliable and lowest greenhouse gas emitters. 
The use of nuclear facilities for industrial applications is 
currently being explored through several studies and 
projects that aim to compete with fossil fuel sources. These 
projects are being developed worldwide – at the European 
level, but mainly in the USA, China and Japan.  

Most projects focus primarily on temperature requirements 
rather than the direct deployment of individual nuclear 
facilities in industrial applications. While these projects are 
sufficient for a high-level technoeconomic studies, real-
world deployment of nuclear power in industrial 
applications requires advanced control strategies.  

With the increasing share of renewable energy sources, 
ensuring grid stability is becoming an ever-growing 
challenge, demanding innovative approaches beyond 
traditional regulatory mechanisms. Neural networks offer a 
modern tool for optimization, enabling intelligent real-time 
decision-making. 

Neural networks (NNs) provide a modern solution for 
optimizing energy systems, particularly in grid regulation 
and stability. As the share of renewable energy grows, 
power generation becomes more variable, creating new 
challenges for system operators. Existing control systems 
were not originally designed for such dynamic conditions, 

making it necessary to explore new approaches that can 
enhance flexibility and responsiveness. Nuclear power 
plants, as a key component of the future energy mix, will 
need to operate in coordination with renewables to ensure 
overall grid stability. This makes the development of 
advanced regulation strategies from the perspective of 
nuclear facilities essential. Modern Artificial intelligence 
(AI)-driven methods allow for more efficient adaptation to 
grid changes, improve load balancing, and support real-time 
decision-making. Ensuring the controllability of power 
grids in this evolving landscape will require innovative, 
data-driven, and predictive regulation strategies. 

This paper explores the potential of neural networks in 
optimizing the operation of industrial energy hubs and 
nuclear facilities, particularly in their role in power grid 
management. Achieving grid controllability can be 
approached through multiple methods, from classical 
mathematical-physical models to innovative AI-based 
solutions. Many facilities operate in cogeneration mode, 
requiring seamless integration with the grid not only to meet 
industrial demand but also to support overall system 
stability. Advanced algorithms enable better adaptation to 
changing conditions and contribute to a more efficient and 
resilient energy ecosystem.  

 

II. INNOVATIVE APPROACH BY NEURAL 
NETWORKS  

Neural networks, in general, are widely used for tasks 
involving dynamic systems and data processing, but when 
dealing with time-series data, Recurrent Neural Networks 
(RNNs) are particularly well-suited. RNNs belong to a class 
of deep learning models designed specifically for sequential 
data processing. This type of neural network is well-suited 
for approximating dynamic systems-they have the ability, 
based on their architecture, to influence current and future 
outputs using previous information [2]. 

Long Short-Term Memory (LSTM): Since traditional 
RNNs generally face the vanishing gradient problem, 
deeply explored in this conference paper by R. Pascanu and 
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T. Mikolov [3], various alternative RNN models have been 
developed. LSTM networks effectively preserve and update 
critical information in long sequential data through gating 
mechanisms [2]. 

Gated Recurrent Unit (GRU): GRU represents a 
simplified variant of the LSTM model that also addresses 
the vanishing gradient problem. A key advantage of GRU 
over LSTM is the reduced number of parameters, leading to 
faster training times and making it more practical for shorter 
sequences. A more detailed description of the different types 
of recurrent neural networks can be found in the source by 
I.D. Mienye [2]. 

Temporal Convolutional Network (TCN): TCNs belong 
to a category of networks that leverage 1D convolutions 
with causality [4]. 

 

III. METHODOLOGY 

In terms of the use of neural networks, for this presented 
study, it is necessary to develop a methodology that is very 
important for the following applications of neural networks 
for different tasks. The solution to this problem consists of 
three functional blocks, as illustrated in Figure 1. In the 
following section, the individual parts that make up the 
methodology will be presented. 

 
Figure 1. Methodology 

 

A. Dataset 

From the perspective of the Dataset, as illustrated in the 
Figure 2, it consists of three main components: Variables, 
Data Preparation, and Data Validation. 

 
Figure 2. Dataset 

Variables: The selection of individual variables influencing 
the predicted quantities is a crucial part of the entire system, 
as it directly affects all subsequent steps. 

Data Preparation: In large datasets, it is common to 
encounter values that are not aligned in the same time step. 
For processing with neural networks, it is beneficial to unify 
the time step. This can be achieved using several methods-
such as forward filling to copy previous values, linear 
interpolation and others. 

Data Validation: Some datasets contain errors either due to 
data availability issues or errors introduced during data 
processing. Therefore, it is essential to develop a framework 

that validates the input data to ensure the accuracy and 
reliability of the predictions.   

 

B. Neural Network 

As shown in Figure 3, the key components of the neural 
network are type of NN, layers and hyperparameters. 

 
Figure 3. Neural Network 

 

Type of Neural network: The type of neural network is 
closely related to the selected dataset. In our work, we use 
recurrent neural networks, primarily LSTM and GRU. As 
an alternative to RNN, we use the TCN neural network.  

Neural network layers: Neural networks can also utilize 
individual layers. In our model, we use the feedback 
weighting of features that influence predictions. Physical 
properties of individual columns can be passed to the layers, 
and the predicted values can be adjusted. 

Hyperparameters: In our model, the key parameters 
include batchsize – which determines the number of 
samples processed during one training step, and number of 
epochs – which determines how many times the model 
passes through the entire dataset.  

 

C. Validation of Results 

The final part of our methodology involves result validation. 

MAE, RMSE: For evaluating the predictions in our model, 
we use these two basic parameters, Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE).  MAE is the 
average of the absolute differences between the predicted 
and actual values: 

 
𝑀𝐴𝐸 =	

1
𝑛(|𝑦! − 𝑦",

#

!$%

| (1) 

where 𝑦! is actual value, 𝑦",  is the predicted value by neural 
network and 𝑛 is the total number of samples. 

Another commonly used parameter is RMSE, which is a 
more sensitive metric as it assigns greater weight to larger 
errors. It represents the square root of the average squared 
differences between the predicted and actual values. 

 

IV. PROPOSED MODEL 

The proposed model is particularly suited for long-term data 
with a consistent time step. In our study, we utilize data from 
the Czech Transmission System Operator (ČEPS) [5], 
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which provides data from the Czech power grid. For 
demonstration purposes, we aim to predict the energy mix 
composition of nuclear power plants (NPPs), combined 
cycle gas turbines (CCGTs), and thermal power plants 
(TPPs) based on training conducted using 2024 data for 
specific periods, namely for 3 weeks in different parts of 
2024. Since the data have different time granularities, 
dataset modification was necessary. In the first approach, 
previous available values were interpolated into the missing 
time slots. The proposed model for multi-criteria prediction 
is based on three types of neural networks: LSTM, GRU and 
TCN. 

 

A. Dataset 

The dataset includes power generation from all types of 
power plants, ancillary services for electricity grid, 
consumption load, frequency, and cross-border power 
flows. These variables are essential for analyzing grid 
stability, balancing supply and power demand. In total, 32 
variables are used for the dataset 

 

B. Approach of the Proposed Model 

The model incorporates several key preprocessing and 
optimization techniques. Scaling input features ensures 
consistency by normalizing data to a fixed range (typically 
0 to 1) using min-max normalization. Feature weighting 
allows the model to adjust the importance of each variable 
during training. To enhance stability and prevent overfitting, 
a trend penalty discourages undesired patterns, leading to 
more reliable time-series predictions. This model was 
computed using 30 epochs for predicting t+15 min. 

 

C. Results 

The Figure 4 presents results for nuclear electrical power 
generation, aiming for the lowest MAE and RMSE. The 
NNs were trained on minute-level data for one week and 
then predicted the following two days. 

 
Figure 4. MAE and RMSE Evaluation for NPPs 

 

Figure 4 presents the prediction performance of different 
neural network types for NPPs power generation across 
three different weeks in January, July, and October.  

In January, GRU achieved the lowest MAE/RMSE 
(1.76/2.26), outperforming both LSTM (6.47/7.54) and 
TCN (11.66/12.82). This suggests that GRU performed the 
best in predicting NPPs generation during the winter month, 
with significantly lower error values compared to the other 
models. 

In July, TCN showed the highest error values (27.28/29.86), 
followed by LSTM (4.44/7.66) and GRU (4.36/7.73). These 
results indicate that TCN struggled with stability during the 
summer months, while GRU exhibited relatively stable 
performance with moderate error values. 

In October, LSTM achieved the best performance with the 
lowest MAE/RMSE (3.40/4.28), followed by GRU 
(3.70/4.95) and TCN (4.34/5.69). While LSTM provided the 
most accurate predictions in October, GRU and TCN also 
performed reasonably well, with GRU showing slightly 
higher error values than LSTM. 

Figure 5 further highlights the unsuitability of the TCN 
neural network for predicting power generation from TPPs, 
CCGTs. 

 
Figure 5. MAE Evaluation for TPPs and CCGTs 

 

These results suggest that GRU delivers the most accurate 
predictions in January, while LSTM performs best in 
October. TCN shows worse results due to its focus on long-
term dependencies, making it less suitable for short 
prediction windows such as t+15. It has difficulty capturing 
fast, short-term changes, which are more prevalent during 
the dynamic summer months, when temperature 
fluctuations and varying demand require more flexible 
models. 

Figure 6 shows the predicted NPPs generation for two days 
after one week of training with a GRU (July). 

  
Figure 6. Comparison of Actual and Predicted Power Generation 

Using GRU Neural Network (July) – Results for NPPs 
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The presented results serve as a foundational cornerstone for 
the subsequent work. The choice between different types of 
neural networks will be the subject of future research, where 
an optimization method will be developed as an additional 
functional block in the methodology. It is the optimization 
of selecting the best configuration of individual neural 
networks for a single application that is crucial for further 
work. In the presented model, not much emphasis has been 
put on the neural network settings - setting hyperparameters, 
number of epochs, batchsize, configuration of weights of 
individual columns in more detail. The chosen multicriteria 
prediction also has a significant impact on the results 
because nowadays different types of power plants are used 
for different situations - mainly in terms of their regulation. 
CCGT and TPP are mainly used for grid balancing. To 
improve the model results it would be better to choose 3 
different datasets for these predicted variables. However, 
this model was also intended to show that multicriteria 
prediction is also possible in today's neural networks. 

Therefore, these results are highly valuable for the next 
steps of the work, as they offer important insights into the 
relative performance of the neural network models under 
varying seasonal conditions. They not only highlight the 
advantages and limitations of each architecture - LSTM, 
GRU, and TCN - but also set the stage for further 
optimization and refinement in predicting power generation. 
By analyzing these results, we obtain a deeper 
understanding of which network performs best under certain 
conditions. This insight helps us identify the factors 
contributing to optimal performance. Moreover, this 
knowledge can be applied to improve the accuracy and 
stability of predictive models in the future. Thus, these 
results are critical, providing both practical and 
methodological guidance for the next phases of the research. 

The aim of this work was to validate our methodology to see 
if it is heading in the right direction. During the development 
of the different parts of the methodology, we have created 
flexible tools that now help us to use neural networks for 
different applications - a dataset preparation program has 
been developed where the time range, the selection of 
variables and how missing data will be filled in can be set. 
As mentioned above the development of a neural network 
settings optimizer is now under development, which uses 
various optimization methods for setting hyperparameters 
such as Bayesian method, Random search, Grid search, but 
also uses parallelization because the speed of learning and 
optimization are essential for future use for larger datasets. 
In future work, we will save trained neural networks for 
simulating and predicting other datasets. 

After this evaluation and development of the different parts, 
we can clearly say that our methodology is going in the right 
direction, and it turns out that the flexible design of the 
different parts opens several possibilities for use. 

 

V. SUMMARY 

The mentioned model successfully demonstrates the 
potential of utilizing neural networks in power engineering, 
a potential that is worth further focusing on. It highlights 
areas where we can explore opportunities for 

implementation, especially given the dynamic times we are 
currently experiencing. 

Neural networks have been studied and implemented for 
failure prediction and dynamic behavior modeling in 
various fields, including the nuclear sector. However, their 
adaptation in energy systems, particularly in nuclear energy, 
remains limited despite the vast data potential enabled by 
modern computational capabilities. 

The developed model, along with the presented 
methodology, will serve as a tool for future research, as we 
have already prepared all the necessary components, 
including a framework. Future work may focus on the 
potential of energy storage integration in nuclear power 
plants, guided by neural network-based control. The most 
crucial aspect of these simulations and predictions is the 
availability of sufficient data for training neural networks. 
Direct implementation of data from nuclear power plants 
could enable neural network-based control for energy 
storage utilization, which will be essential. In a future 
energy system where NPPs must operate alongside 
renewables without relying on fossil-based regulation, such 
simulations of grid dynamics and nuclear power plant 
control will be critical. Additionally, the often-discussed 
application of nuclear facilities for industrial heat supply 
will require a different approach to regulation, potentially 
leveraging neural networks-this will be a key aspect of 
future work. 

Future research will examine each part of the methodology 
separately. From the perspective of data preparation, 
ensuring data quality and unifying time series is a crucial 
and extensive topic. The neural network framework, 
including model architectures and hyperparameter settings, 
is another essential component of future research. 
Moreover, the evaluation and validation of results for 
implementing neural networks in grid control will play a 
critical role in the next phases of development. 
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